Comparison: LEDA, BIKE, QC-MDPC, HQC

Carl A. Miller NIST Computer Security Division October 19, 2018

NIST PQC Seminar (not for public distribution)

The Basics

- Each one is a code-based scheme for either encryption or key encapsulation.
- Each one takes advantage of low-weight (i.e., sparse) binary vectors or matrices.

Code-based encryption

Suppose Bob creates a generator matrix G for a binary code that he knows how to decode.

He then obfuscates it by multiplying it by a random invertible matrix U, and gives the result to Alice.

Code-based encryption

In these protocols, we assume that all matrices are **quasicyclic**. (This allows smaller key size.)

$$\begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_n & b_1 & b_2 & b_3 & \cdots & b_n \\ a_2 & a_3 & a_4 & \cdots & a_1 & b_2 & b_3 & b_4 & \cdots & b_1 \\ a_3 & a_4 & a_5 & \cdots & a_2 & b_3 & b_4 & b_5 & \cdots & b_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_2 & a_3 & \cdots & a_{n-1} & b_n & b_1 & b_2 & \cdots & b_{n-1} \end{bmatrix}$$

BIKE-1

Alice chooses a random vector e (low-weight) and m (uniform), and sends m(UG) + e.

Bob recovers e and uses it to compute the shared key. Here, G is taken to be a random low-density (quasi-cyclic) matrix.

BIKE-3, another KEM, is pretty similar.

BIKE-2

Bob chooses a low-density parity check matrix H and an invertible matrix V.

(Here V is chosen so that the first block of HV is the identity.)

The key is encapsulated by Alice encoding a random lowweight vector e.

QC-MDPC

Like BIKE-1, except:

* G is instead a random moderate-density parity check code. (Ignore the above sentence.)

* The information is contained in m (rather than e).

The authors first describes an IND-CPA encryption algorithm, roughly the same as QC-MDPC.

Then they describe a more complex algorithm that is claimed to be IND-CCA₂.

HQC

A complex algorithm, also claimed to be IND-CCA2 secure.

Here the generator matrix G is fixed, but the message is disguised using additional random matrices x, y, h, e, r_1 , r_2 . (All are all low-weight except h.)

Security Considerations

Security considerations

Schemes of this type (quasi-cyclic McEliece-style schemes) seem to be well-studied.

All four schemes claim security based on the hardness of decoding quasi-cyclic codes. (The connection is obvious to me for BIKE, and QC-MDPC, and a little less so for the more complex algorithms in HQC and LEDA.)

Security considerations

BIKE and QC-MDPC claim IND-CPA security.

HQC and LEDA claim IND-CCA2 security (although a commenter challenged this in the case of LEDA).

Other commenters raised security issues for HQC, LEDA, and BIKE, but none of them seem fatal to me. (Comments from Ray?)

Performance

	Category	n_0	$egin{array}{c} { m KeyGen} \ { m (ms)} \end{array}$	${ m Encrypt}\ { m (ms)}$	Decrypt (ms)
LEDApkc:	1	2 3 4	$ \begin{vmatrix} 13.07 & (\pm \ 0.37) \\ 5.75 & (\pm \ 0.23) \\ 4.63 & (\pm \ 0.16) \end{vmatrix} $	$\begin{array}{c} 0.75 \ (\pm \ 0.05) \\ 0.75 \ (\pm \ 0.04) \\ 0.94 \ (\pm \ 0.08) \end{array}$	$\begin{array}{c} 4.77 \ (\pm \ 0.51) \\ 6.04 \ (\pm \ 0.40) \\ 6.54 \ (\pm \ 0.62) \end{array}$
(updated)	2–3	$2 \\ 3 \\ 4$	$\begin{array}{c} 33.99 \ (\pm \ 0.65) \\ 18.46 \ (\pm \ 0.28) \\ 13.01 \ (\pm \ 0.33) \end{array}$	$1.94~(\pm 0.12)$	$14.90 \ (\pm \ 0.71)$
	4–5	2 3 4	$\begin{array}{c} 79.36 \ (\pm \ 1.45) \\ 46.72 \ (\pm \ 0.95) \\ 30.62 \ (\pm \ 0.58) \end{array}$	$4.20~(\pm~0.22)$	

BIKE-1:

KeyGen (cycles)

Encaps (cycles)

Decaps (cycles)

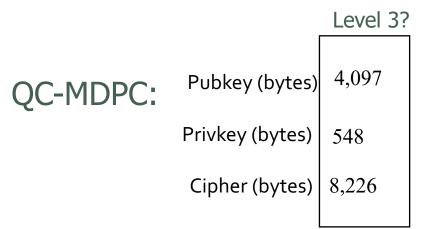
KeyGen (ms)	Encaps (ms)	Decaps (ms)
0.17	0.36	0.57
0.18	0.38	0.61
0.19	0.40	0.63
0.37	0.77	1.13
0.40	0.83	1.21
0.43	0.89	1.28
0.65	1.38	1.96
0.76	1.60	2.22
0.78	1.65	2.35
0.82	1.76	2.50
	$\begin{array}{c c} 0.17 \\ 0.18 \\ 0.19 \\ \hline 0.37 \\ 0.40 \\ 0.43 \\ \hline 0.65 \\ 0.76 \\ 0.78 \\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Level 3?

131,000,000

20,000,000

230,000,000


Level 1	Level 3	Level 5		
730,025	1,709,921	2,986,647	QC-MDPC:	KeyGen (cycles)
689, 193	1,850,425	3,023,816		Encaps (cycles)
2,901,203	7,666,855	17,483,906		Decaps (cycles)

				-	Max Plaintext	-
	Level:	At rest	In memory	size (B)	size (B)	size (B)
		24	468	$1,\!880$	2,001	3,760
	1	24	604	2,416	$2,\!483$	3,624
LEDApkc		24	716	3,192	3,231	4,256
(updated)		32	644	3,072	3,251	$6,\!144$
	3	32	828	4,464	4,565	6,696
	-	32	924	5,520	5,602	7,360
	-	40	764	4,704	4,950	9,408
	5	40	988	$7,\!120$	7,269	$10,\!680$
		40	1,092	8,592	8,681	$11,\!456$

Pubkey (bytes) PrivKey (bytes				
5,558	252	5,622		
5,938	252	6,001		
6,170	252	6,234		
10,150	404	10,214		
10,918	404	10,982		
11,688	404	11,752		
14,754	532	14,818		
15,898	532	15,962		
16,926	566	16,990		
17,714	566	17,778		
	5,558 $5,938$ $6,170$ $10,150$ $10,918$ $11,688$ $14,754$ $15,898$ $16,926$	PrivKey (byte 5,558 252 5,938 252 6,170 252 10,150 404 10,918 404 11,688 404 14,754 532 15,898 532 16,926 566	PrivKey (bytes) 5,558 252 5,622 5,938 252 6,001 6,170 252 6,234 10,150 404 10,214 10,918 404 10,982 11,688 404 11,752 14,754 532 14,818 15,898 532 15,962 16,926 566 16,990	

HQC:

BIKE-1:	Level 1	Level 3	Level 5
Pubkey (bytes) Privkey (bytes)	266	5,473 287	8,187 548
Cipher (bytes)	2,540	5,473	8,187

Patents

HQC has a patent.

LEDApkc is "fully patent free."

"BIKE-1 and BIKE-2 are not covered by any patent. BIKE-3 is covered by a patent whose owners are willing to grant a nonexclusive license ... without compensation ..."

QC-MDPC has a patent. (Note: HQC and QC- MDPC have also agreed to a non-exclusive license?)

Comparison: LEDA, BIKE, QC-MDPC, HQC

Carl A. Miller NIST Computer Security Division October 19, 2018

NIST PQC Seminar (not for public distribution)